Solid-shell element model of assumed through-thickness electric distribution for laminate composite piezoelectric structures
نویسندگان
چکیده
The eight-node solid-shell finite element models have been developed for the analysis of laminated composite pate/shell structures with piezoelectric actuators and sensors. To resolve the locking problems of the solid-shell elements in laminated materials and improve accuracy, the assumed natural strain method and hybrid stress method are employed. The nonlinear electric potential distribution in piezoelectric layer is described by introducing internal electric potential. The developed finite element models, especially, electric potential node model, have the advantages of simpler modeling and can obtain same effect that exact solution described.
منابع مشابه
The Effect of Temperature Dependency on the Thermo-Electro-Elastic Analysis of Functionally Graded Piezoelectric Spherical Shell
Results of electro-thermo-elastic analysis of a functionally graded thick-walled spherical shell made of temperature dependent materials are presented in this article. All material properties are assumed temperature-dependent and also are graded along the thickness direction based on power function. Temperature dependency is accounted for all material properties including, thermal, mechanical a...
متن کاملFinite Element Analysis of Functionally Graded Piezoelectric Beams
In this paper, the static bending, free vibration, and dynamic response of functionally graded piezoelectric beams have been carried out by finite element methodunder different sets of mechanical, thermal, and electrical loadings. The beam with functionally graded piezoelectric material (FGPM) is assumed to be graded across the thickness with a simple power law distributio...
متن کاملOn Three-Dimensional Layered Piezoelectric Shell Elements for Design Simulation of Adaptive Structures
The paper deals with the modelling and analysis of thick piezoelectric multilayer composite shell continua applied to accurate and optimal design of adaptive (smart) structural components and systems in industrial applications. The smart composite is made of n laminae, in which each lamina can be used as either actuator, sensor, self-sensing actuator, or passive structural component. A discrete...
متن کاملFluid-Structure Interaction of Vibrating Composite Piezoelectric Plates Using Exponential Shear Deformation Theory
In this article fluid-structure interaction of vibrating composite piezoelectric plates is investigated. Since the plate is assumed to be moderately thick, rotary inertia effects and transverse shear deformation effects are deliberated by applying exponential shear deformation theory. Fluid velocity potential is acquired using the Laplace equation, and fluid boundary conditions and wet dynamic ...
متن کاملAnalytical Solution for Electro-mechanical Behavior of Piezoelectric Rotating Shaft Reinforced by BNNTs Under Non-axisymmetric Internal Pressure
In this study, two-dimensional electro-mechanical analysis of a composite rotating shaft subjected to non-axisymmetric internal pressure and applied voltage is investigated where hollow piezoelectric shaft reinforced by boron nitride nanotubes (BNNTs). Composite structure is modeled based on piezoelectric fiber reinforced composite (PFRC) theory and a representative volume element has been cons...
متن کامل